Jaringan Syaraf Tiruan

Jaringan Syaraf Tiruan adalah paradigma pemrosesan suatu informasi yang terinspirasi oleh sistim sel syaraf biologi, sama seperti otak yang memproses suatu informasi. Elemen mendasar dari paradigma tersebut adalah struktur yang baru dari sistim pemrosesan informasi. Jaringan Syaraf Tiruan, seperti manusia, belajar dari suatu contoh. Jaringan Syaraf Tiruan dibentuk untuk memecahkan suatu masalah tertentu seperti pengenalan pola atau klasifikasi karena proses pembelajaran. Jaringan Syaraf Tiruan berkembang secara pesat pada beberapa tahun terakhir.

Jaringan Syaraf Tiruan telah dikembangkan sebelum adanya suatu komputer konvensional yang canggih dan terus berkembang walaupun pernah mengalami masa vakum selama beberapa tahun.

Jaringan saraf tiruan (JST) (Bahasa Inggris: artificial neural network (ANN), atau juga disebut simulated neural network (SNN), atau umumnya hanya disebut neural network (NN)), adalah jaringan dari sekelompok unit pemroses kecil yang dimodelkan berdasarkan jaringan saraf manusia. JST merupakan sistem adaptif yang dapat merubah strukturnya untuk memecahkan masalah berdasarkan informasi eksternal maupun internal yang mengalir melalui jaringan tersebut.

Secara sederhana, JST adalah sebuah alat pemodelan data statistik non-linier. JST dapat digunakan untuk memodelkan hubungan yang kompleks antara input dan output untuk menemukan pola-pola pada data.

Model Dasar Jaringan Syaraf Tiruan

Mengadopsi esensi dasar dari system syaraf biologi, syaraf tiruan digambarkan sebagai berikut : Menerima input atau masukan (baik dari data yang dimasukkan atau dari output sel syaraf pada jaringan syaraf. Setiap input datang melalui suatu koneksi atau hubungan yang mempunyai sebuah bobot (weight). Setiap sel syaraf mempunyai sebuah nilai ambang. Jumlah bobot dari input dan dikurangi dengan nilai ambang kemudian akan mendapatkan suatu aktivasi dari sel syaraf (post synaptic potential, PSP, dari sel syaraf). Signal aktivasi kemudian menjadi fungsi aktivasi / fungsi transfer untuk menghasilkan output dari sel syaraf. Jika tahapan fungsi aktivasi digunakan ( output sel syaraf = 0 jika input <0 dan 1 jika input >= 0) maka tindakan sel syaraf sama dengan sel syaraf biologi yang dijelaskan diatas (pengurangan nilai ambang dari jumlah bobot dan membandingkan dengan 0 adalah sama dengan membandingkan jumlah bobot dengan nilai ambang). Biasanya tahapan fungsi jarang digunakan dalan Jaringan Syaraf Tiruan

Bagaimana sel syaraf saling berhubungan? Jika suatu jaringan ingin digunakan untuk berbagai keperluan maka harus memiliki input (akan membawa nilai dari suatu variabel dari luar) dan output (dari prediksi atau signal kontrol). Input dan output sesuai dengan sensor dan syaraf motorik seperti signal datang dari mata kemudian diteruskan ke tangan, Dalam hal ini terdapat sel syaraf atau neuron pada lapisan tersembunyi berperan pada jaringan ini. Input, lapisan tersembunyi dan output sel syaraf diperlukan untuk saling terhubung satu sama lain. Berdasarkan dari arsitektur (pola koneksi), Jaringan Syaraf Tiruan dapat dibagi kedalam dua katagori :


Struktur feedforward

Sebuah jaringan yang sederhana mempunyai struktur feedforward dimana signal bergerak dari input kemudian melewati lapisan tersembunyi dan akhirnya mencapai unit output (mempunyai struktur perilaku yang stabil). Tipe jaringan feedforward mempunyai sel syaraf yang tersusun dari beberapa lapisan. Lapisan input bukan merupakan sel syaraf. Lapisan ini hanya member pelayanan dengan mengenalkan suatu nilai dari suatu variabel. Lapisan tersembunyi dan lapisan output sel syaraf terhubung satu sama lain dengan lapisan sebelumnya. Kemungkinan yang timbul adalah adanya hubungan dengan beberapa unit dari lapisan sebelumnya atau terhubung semuanya (lebih baik).

Yang termasuk dalam struktur feedforward :

– Single-layer perceptron

– Multilayer perceptron

– Radial-basis function networks

– Higher-order networks

– Polynomial learning networks

Struktur recurrent (feedback)

Jika suatu jaringan berulang (mempunyai koneksi kembali dari output ke input) akan menimbulkan ketidakstabilan dan akan menghasilkan dinamika yang sangat kompleks. Jaringan yang berulang sangat menarik untuk diteliti dalam Jaringan Syaraf Tiruan, namun sejauh ini structure feedforward sangat berguna untuk memecahkan masalah. Yang termasuk dalam stuktur recurrent (feedback) :

– Competitive networks

– Self-organizing maps

– Hopfield networks

– Adaptive-resonanse theory models

Lapisan pada Jaringan Syaraf Tiruan

Jaringan Syaraf Tiruan biasanya mempunyai 3 group atau lapisan yaitu unit-unit : lapisan input yang terhubung dengan lapisan tersembunyi yang selanjutnya terhubung dengan lapisan output.

· Aktifitas unit-unit lapisan input menunjukkan informasi dasar yang kemudian digunakan dalam Jaringan Syaraf Tiruan.

· Aktifitas setiap unit-unit lapisan tersembunyi ditentukan oleh aktifitas dari unitunit input dan bobot dari koneksi antara unit-unit input dan unit-unit lapisan tersembunyi.

Karakteristik dari unit-unit output tergantung dari aktifitas unit-unit lapisan tersembunyi dan bobot antara unit-unit lapisan tersembunyi dan unit-unit output

Perceptron

Perceptron termasuk kedalam salah satu bentuk Jaringan Syaraf Tiruan yang sederhana. Perceptron biasanya digunakan untuk mengklasifikasikan suatu tipe pola tertentu yang sering dikenal dengan istilah pemisahan secara linear. Pada dasarnya perceptron pada Jaringan Syaraf dengan satu lapisan memiliki bobot yang bisa diatur dan suatu nilai ambang. Algoritma yang digunakan oleh aturan perceptron ini akan mengatur parameter-parameter bebasnya melalui proses pembelajaran. Fungsi aktivasi dibuat sedemikian rupa sehingga terjadi pembatasan antara daerah positif dan daerah negatif.

Fungsi Transfer

Karakter dari Jaringan Syaraf Tiruan tergantung atas bobot dan fungsi inputoutput (fungsi transfer) yang mempunyai ciri tertentu untuk setiap unit. Fungsi ini terdiri dari 3 katagori yaitu :

Untuk linear units, Aktifitas output adalah sebanding dengan jumlah bobot output.

Untuk threshold units, Output diatur satu dari dua tingkatan tergantung dari apakah jumlah input adalah lebih besar atau lebih kecil dari nilai ambang.

Untuk sigmoid units, Output terus menerus berubah-ubah tetapi tidak berbentuk linear. Unit ini mengandung kesamaan yang lebih besar dari sel syaraf sebenarnya dibandingkan dengan linear dan threshold unit, namun ketiganya harus dipertimbangkan dengan perkiraan kasar.

Untuk membuat Jaringan Syaraf Tiruan untuk melakukan beberapa kerja khusus. Harus dipilih bagaimana unit-unit dihubungkan antara satu dengan yang lain dan harus mengatur bobot dari hubungan tersebut secara tepat. Hubungan tersebut menentukan apakah mungkin suatu unit mempengaruhi unit yang lain. Bobot menentukan kekuatan dari pengaruh tersebut.

Dapat dilakukan pembelajaran terhadap 3 lapisan pada Jaringan Syaraf Tiruan untuk melakukan kerja khusus dengan menggunakan prosedure dibawah ini :

1. Memperkenalkan Jaringan Syaraf Tiruan dengan contoh pembelajaran yang terdiri dari sebuah pola dari aktifitas untuk unit-unit input bersama dengan pola yang diharapkan dari aktifitas untuk unit-unit output.

2. Menentukan seberapa dekat output sebenarnya dari Jaringan Syaraf Tiruan sesuai dengan output yang diharapkan.

3. Mengubah bobot setiap hubungan agar Jaringan Syaraf Tiruan menghasilkan suatu perkiraan yang lebih baik dari output yang diharapkan Ilustrasi dari prosedure pembelajaran diatas dapat dilihat dibawah ini : Diasumsikan bahwa suatu Jaringan Syaraf Tiruan dapat mengenali digit dari

tulisan tangan. Dapat digunakan suatu array dengan 256 sensor, setiap sensor merekam ada tidaknya tinta pada suatu digit. Jaringan Syaraf Tiruan memerlukan 256 unit-unit input (satu untuk setiap sensor), 10 unit-unit output (satu untuk setiap digit) dan sebuah nomor dari unit-unit tersembunyi. Untuk setiap digit yang direkam oleh sensor, Jaringan Syaraf Tiruan akan menghasilkan aktifitas yang tinggi pada unit output yang cocok dan aktifitas yang rendah pada unit-unit output yang lain. Untuk pembelajaran Jaringan Syaraf Tiruan, ditampilkan sebuah gambar dari sebuah digit dan membandingkan aktifitas sebenarnya dari 10 unit-unit output dengan aktifitas yang diharapkan. Kemudian menghitung error, dimana ditentukan sebagai persegi yang berbeda antara aktifitas sebenarnya dan aktifitas yang diharapkan. Selanjutnya mengubah bobot setiap hubungan untuk mengurangi error. Hal ini dilakukan berulang-ulang dengan banyak gambar yang berbeda Untuk mengimplementasikan prosedure ini diperlukan perhitungan error derivative untuk bobot (EW) supaya perubahan bobot oleh sebuah jumlah yang sesuai pada nilai dimana error berubah karena bobot diubah. Suatu cara untuk menghitung EW adalah mengubah bobot sedikit dan meneliti bagaimana error dapat berubah. Namun metode ini kurang efisien karena membutuhkan gangguan yang berbeda untuk setiap dari sekian banyak bobot.

Cara lain yang sering digunakan untuk menghitung EW adalah dengan menggunakan algoritma back-propagation. Saat ini merupakan metode yang penting untuk pembelajaran Jaringan Syaraf Tiruan. Metode ini dikembangkan secara mandiri oleh 2 tim yaitu Fogelman-Soulie, Gallinari dan Le Cun dari Prancis dan Rumelhart, Hinton dan Williams dari Amerika.

Faktor Keberhasilan Jaringan Syaraf Tiruan

Jaringan Syaraf Tiruan mengalami “booming” dan diminati beberapa tahun terakhir ini, dan sangat sukses digunakan untuk memecahkan berbagai masaalah dalam berbagai disiplin ilmu seperti : bidang finansial, kedokteran, teknik, geologi dan fisika. Lebih jauh lagi, bahwa sesuatu masaalah dengan menggunakan Jaringan Syaraf Tiruan dapat diprediksi, dikelompokkan dan dikontrol. Ada beberapa faktor yang mendukung keberhasilan tersebut antara lain :

Handal. Jaringan Syaraf Tiruan adalah teknik pemodelan yang sangat memuaskan yang dapat membuat model suatu fungsi yang sangat kompleks. Khususnya Jaringan Syaraf Tiruan nonlinear. Sejak beberapa tahun, model linear umumnya digunakan dimana model linear dikenal dengan strategi optimasi. Jaringan Syaraf Tiruan juga menggunakan model nonlinear dengan berbagai variabel.

Mudah digunakan. Jaringan Syaraf Tiruan dipelajari dengan contoh. Pengguna Jaringan Syaraf Tiruan mengumpulkan data dan melakukan pembelajaran algoritma untuk mempelajari secara otomatis struktur data, sehingga pengguna tidak memerlukan pengetahuan khusus mengenai bagaimana memilih dan mempersiapkan data, bagaimana memilih Jaringan Syaraf Tiruan yang tepat, bagaimana membaca hasil, tingkatan pengetahuan yang diperlukan untuk keberhasilan Menggunakan Jaringan Syaraf Tiruan tidak lebih dari pemecahan masalah yang menggunakan metode statistik nonlinear yang telah dikenal.

Aplikasi Jaringan Syaraf Tiruan

Jaringan Syaraf Tiruan mampu menggambarkan setiap situasi adanya sebuah hubungan antara variabel predictor (independents, inputs) dan variabel predicted (dependents, outputs), ketika hubungan tersebut sangat kompleks dan tidak mudah untuk menjelaskan kedalam istilah yang umum dari “correlations” atau “differences between groups”. Beberapa contoh permasalahan yang dapat dipecahkan secara baik oleh Jaringan Syaraf Tiruan antara lain:

1. Deteksi Fenomena Kedokteran.

Berbagai indikasi yang berhubungan dengan kesehatan (kombinasi dari denyut jantung, tingkatan dan berbagai substansi dalam darah, dll) dapat dimonitoring. Serangan pada kondisi kesehatan tertentu dapat dihubungan dengan perubahan kombinasi yang sangat kompeks (nonlinear dan interaktif) pada subset dari variabel, dapat dimonitoring. Jaringan Syaraf Tiruan telah digunakan untuk mengenali pola yang diperkirakan sehingga perlakuan yang tepat dapat dilakukan.

2. Untuk mendeteksi golongan darah manusia

Dengan menggunakan pengolahan citra. Manusia berusaha keras dengan segala kemampuannya untuk menirukan kehebatan yang mereka miliki, misalnya seorang dokter dengan keahliannya dapat membedakan golongan darah manusia antara A, B, AB, dan O. Dengan pendekatan kecerdasan buatan, manusia berusaha menirukan bagaimana polapola dibentuk. Jaringan Syaraf Tiruan telah dikembangkan sebagai generalisasi model matematik dari pembelajaran manusia dan aplikasi aplikasi lain nya


Leave a Reply

Your email address will not be published. Required fields are marked *